Sensitivity of Multi-dimensional Bayesian Classifiers

نویسندگان

  • Janneke H. Bolt
  • Silja Renooij
چکیده

One-dimensional Bayesian network classifiers (OBCs) are popular tools for classification [2]. An OBC is a Bayesian network [4] consisting of just a single class variable and several feature variables. Multi-dimensional Bayesian network classifiers (MBCs) were introduced to generalise OBCs to multiple class variables [1, 6]. Classification performance of OBCs is known to be rather good. Experimental results that support this observation were substantiated by a study of the sensitivity properties of naive OBCs [5]. In this paper we investigate the sensitivity of MBCs. We present sensitivity functions for the outcome probabilities of interest of an MBC and use these functions to study the sensitivity value. This value captures the sensitivity of an output probability to small changes in a parameter. We compare MBCs to OBCs in this respect and conclude that an MBC will on average be even more robust to parameter changes than an OBC.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robustness of Multi-dimensional Bayesian Network Classifiers

Multi-dimensional Bayesian network classifiers (MDCs) generalise the popular robustly performing one-dimensional classifiers (ODCs) to application domains that require an instance to be classified into a combination of classes. In previous work we compared the sensitivity of MDC and ODC output probabilities to small parameter inaccuracies. In this paper we extend our analyses and study the robu...

متن کامل

Multi-dimensional Bayesian Network Classifiers

We introduce the family of multi-dimensional Bayesian network classifiers. These classifiers include one or more class variables and multiple feature variables, which need not be modelled as being dependent on every class variable. Our family of multi-dimensional classifiers includes as special cases the well-known naive Bayesian and tree-augmented classifiers, yet offers better modelling capab...

متن کامل

Inference and Learning in Multi-dimensional Bayesian Network Classifiers

We describe the family of multi-dimensional Bayesian network classifiers which include one or more class variables and multiple feature variables. The family does not require that every feature variable is modelled as being dependent on every class variable, which results in better modelling capabilities than families of models with a single class variable. For the family of multidimensional cl...

متن کامل

Mining multi-dimensional concept-drifting data streams using Bayesian network classifiers

In recent years, a plethora of approaches have been proposed to deal with the increasingly challenging task of mining concept-drifting data streams. However, most of these approaches can only be applied to uni-dimensional classification problems where each input instance has to be assigned to a single output class variable. The problem of mining multi-dimensional data streams, which includes mu...

متن کامل

Predicting human immunodeficiency virus inhibitors using multi-dimensional Bayesian network classifiers

OBJECTIVE Our aim is to use multi-dimensional Bayesian network classifiers in order to predict the human immunodeficiency virus type 1 (HIV-1) reverse transcriptase and protease inhibitors given an input set of respective resistance mutations that an HIV patient carries. MATERIALS AND METHODS Multi-dimensional Bayesian network classifiers (MBCs) are probabilistic graphical models especially d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014